30 research outputs found

    Interpretable deep learning for guided structure-property explorations in photovoltaics

    Full text link
    The performance of an organic photovoltaic device is intricately connected to its active layer morphology. This connection between the active layer and device performance is very expensive to evaluate, either experimentally or computationally. Hence, designing morphologies to achieve higher performances is non-trivial and often intractable. To solve this, we first introduce a deep convolutional neural network (CNN) architecture that can serve as a fast and robust surrogate for the complex structure-property map. Several tests were performed to gain trust in this trained model. Then, we utilize this fast framework to perform robust microstructural design to enhance device performance.Comment: Workshop on Machine Learning for Molecules and Materials (MLMM), Neural Information Processing Systems (NeurIPS) 2018, Montreal, Canad

    Interpretable deep learning for guided microstructure-property explorations in photovoltaics

    Get PDF
    The microstructure determines the photovoltaic performance of a thin film organic semiconductor film. The relationship between microstructure and performance is usually highly non-linear and expensive to evaluate, thus making microstructure optimization challenging. Here, we show a data-driven approach for mapping the microstructure to photovoltaic performance using deep convolutional neural networks. We characterize this approach in terms of two critical metrics, its generalizability (has it learnt a reasonable map?), and its intepretability (can it produce meaningful microstructure characteristics that influence its prediction?). A surrogate model that exhibits these two features of generalizability and intepretability is particularly useful for subsequent design exploration. We illustrate this by using the surrogate model for both manual exploration (that verifies known domain insight) as well as automated microstructure optimization. We envision such approaches to be widely applicable to a wide variety of microstructure-sensitive design problems
    corecore